2.2.3 Curve Plotting-II

- ▶ Here we will plot some cartesian graphs for build up our concept. You will try all of these graphs and try to understand the key ideas behind them.
- **►** Curve Type-I: y = 0, y = a, y = -a, y = x, y = |x|, $y = x^2$, $y = x^3$, $y = x^4$, y = -x, y = -|x|, $y = -x^2$, $y = -x^3$, $y = -x^4$, $y = \sqrt{x}$, $y = -\sqrt{x}$, $y = \sqrt{x+2}$, $y = \sqrt{x-2}$, $y = \frac{2}{x}$, $y = \frac{3}{x}$, $y = \frac{3}{x} 1$, $y = \frac{3}{x-1}$, $y = \frac{3}{x+1}$.

- ► Curve Type-IV: x + y = a, $x^2 + y^2 = a^2$, $x^3 + y^3 = a^3$, $x^4 + y^4 = a^4$, $x^2 + y^2 = 0$, |x| + |y| = a, $y = \sqrt{2 x^2}$, $y = 1 + \sqrt{2 x^2}$, $y = 1 \sqrt{2 x^2}$, $y = \sqrt{4 (x 1)^2}$, $y = \sqrt{4 (x 2)^2}$, $y = \sqrt{9 (x 3)^2}$.
- Curve Type-V: $y^2 = x \ vs. \ y = \sqrt{x}, \ y = \sqrt{2 x^2} \ vs. \ y^2 + x^2 = 2, \ y = \sqrt{4 (x 2)^2} \ vs. \ y^2 + (x 2)^2 = 4, \ y = x(x 1) \ vs. \ y = x(x 1)(x 2) \ vs. \ y = x(x 1)(x 2)(x 3).$
- Find Range of x, y, z: i) $x, y, z \ge 0$, $x^2 + y^2 = 4$, z = 2, x + y = 4; ii) $x + y + z \le 3$, $y^2 \le 4x$, $0 \le x \le 1$, $y \ge 0$, $z \ge 0$; iii) $z = y^2$, z = 1, x = 0, x = 1, y = -1, y = 1; iv) $x^2 + y^2 + z^2 \le 1$, z = 1/2; v) x = 0, y = 0, z = 0, 6x + 4y + 3z = 12; vi) x = 0, y = 0, z = 0, z = 1, z = 1/2; z

2.2.4 Computing Area

Rule 1: Let y = f(x) be a continuous function on $[a, b] \Rightarrow$ Area of the curve enclosed by x = a to x = b is $\int_a^b f(x)dx = \int_a^b ydx$.

Rule 2: Let x=g(y) be a continuous function on $[c,d] \Rightarrow$ Area of the curve enclosed by y=c to y=d is $\int_c^d g(y)dy=\int_c^d xdy$.

[Do It Yourself] 2.8. Find the area bounded between two parabolas $y = x^2 + 4$ and $y = -x^2 + 6$.

[Do It Yourself] 2.9. Let $g: [0,2] \to \mathbb{R}$ be defined by $g(x) = \int_0^x (x-t)e^t dt$. Then area between the curve y = g''(x) and the x-axis over the interval [0,2] is $(A) e^2 - 1$ $(B) 2(e^2 - 1)$ $(C) 4(e^2 - 1)$. $(D) 8(e^2 - 1)$.

[Do It Yourself] 2.10. Find the area of the region in the first quadrant enclosed by the curves y = 0, y = x and $y = \frac{2}{x} - 1$.

[Do It Yourself] 2.11. The area of the region bounded by y = 8 and $y = |x^2 - 1|$ is (A) 50/3 (B) 100/3 (C) 110/3. (D) 52/3.

[Do It Yourself] 2.12. Find the area of the smaller of the two regions enclosed between $\frac{x^2}{9} + \frac{y^2}{2} = 1$ and $y^2 = x$.

[Do It Yourself] 2.13. Find the area of the region bounded by $y = x^3$, x+y-2 = 0, y = 0.

[Do It Yourself] 2.14. Find the area of the region bounded by $y = x^2$, x + y = 2.

[Do It Yourself] 2.15. Find the area of the region bounded by $y = (x-2)^2$, $y = 4 - x^2$.

[Do It Yourself] 2.16. Show that the area bounded by $x^2 + y^2 = 64a^2$ and $y^2 = 12ax$ (a > 0) lying in the positive side of x-axis is $\frac{16a^2}{3}(4\pi + \sqrt{3})$.

2.2.5 Computing Area in Polar Coordinate

- Rule 1: Let $r = f(\theta)$ be a continuous function on $[\theta_1, \theta_2] \Rightarrow$ Area of the curve enclosed by $\theta = \theta_1$ to $\theta = \theta_2$ is $\frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta$.
- ▶ Draw all these curve given below and try to find the area.

[Do It Yourself] 2.25. Find the area of the circle $r = 2a \sin \theta$.

 $[Hint: area = \frac{1}{2} \int_0^{\pi} r^2 d\theta]$

[Do It Yourself] 2.26. Find the area of the cardioide $r = a(1 - \cos \theta)$. [Hint: $area = 2 \times \frac{1}{2} \int_0^{\pi} r^2 d\theta$]

[Do It Yourself] 2.27. Show that the entire area of the lemniscate $r^2 = a^2 \cos 2\theta$ is a^2 .

[Do It Yourself] 2.28. Show that the entire area of $r = a \cos 2\theta$ is $\frac{\pi a^2}{2}$.

[Do It Yourself] 2.29. Find the entire area of i) $r = a \sin 2\theta$, ii) $r = a \cos 3\theta$, iii) $r = a \cos 4\theta$.